182 research outputs found

    Meeting Global Cooling Demand with Photovoltaics during the 21st Century

    Full text link
    Space conditioning, and cooling in particular, is a key factor in human productivity and well-being across the globe. During the 21st century, global cooling demand is expected to grow significantly due to the increase in wealth and population in sunny nations across the globe and the advance of global warming. The same locations that see high demand for cooling are also ideal for electricity generation via photovoltaics (PV). Despite the apparent synergy between cooling demand and PV generation, the potential of the cooling sector to sustain PV generation has not been assessed on a global scale. Here, we perform a global assessment of increased PV electricity adoption enabled by the residential cooling sector during the 21st century. Already today, utilizing PV production for cooling could facilitate an additional installed PV capacity of approximately 540 GW, more than the global PV capacity of today. Using established scenarios of population and income growth, as well as accounting for future global warming, we further project that the global residential cooling sector could sustain an added PV capacity between 20-200 GW each year for most of the 21st century, on par with the current global manufacturing capacity of 100 GW. Furthermore, we find that without storage, PV could directly power approximately 50% of cooling demand, and that this fraction is set to increase from 49% to 56% during the 21st century, as cooling demand grows in locations where PV and cooling have a higher synergy. With this geographic shift in demand, the potential of distributed storage also grows. We simulate that with a 1 m3^3 water-based latent thermal storage per household, the fraction of cooling demand met with PV would increase from 55% to 70% during the century. These results show that the synergy between cooling and PV is notable and could significantly accelerate the growth of the global PV industry

    Meeting Global Cooling Demand with Photovoltaics during the 21st Century

    Full text link
    Space conditioning, and cooling in particular, is a key factor in human productivity and well-being across the globe. During the 21st century, global cooling demand is expected to grow significantly due to the increase in wealth and population in sunny nations across the globe and the advance of global warming. The same locations that see high demand for cooling are also ideal for electricity generation via photovoltaics (PV). Despite the apparent synergy between cooling demand and PV generation, the potential of the cooling sector to sustain PV generation has not been assessed on a global scale. Here, we perform a global assessment of increased PV electricity adoption enabled by the residential cooling sector during the 21st century. Already today, utilizing PV production for cooling could facilitate an additional installed PV capacity of approximately 540 GW, more than the global PV capacity of today. Using established scenarios of population and income growth, as well as accounting for future global warming, we further project that the global residential cooling sector could sustain an added PV capacity between 20-200 GW each year for most of the 21st century, on par with the current global manufacturing capacity of 100 GW. Furthermore, we find that without storage, PV could directly power approximately 50% of cooling demand, and that this fraction is set to increase from 49% to 56% during the 21st century, as cooling demand grows in locations where PV and cooling have a higher synergy. With this geographic shift in demand, the potential of distributed storage also grows. We simulate that with a 1 m3^3 water-based latent thermal storage per household, the fraction of cooling demand met with PV would increase from 55% to 70% during the century. These results show that the synergy between cooling and PV is notable and could significantly accelerate the growth of the global PV industry

    Techno-economic model of a second-life energy storage system for utility-scale solar power considering li-ion calendar and cycle aging

    Full text link
    While the use of energy storage combined with grid-scale photovoltaic power plants continues to grow, given current lithium-ion battery prices, there remains uncertainty about the profitability of these solar-plus-storage projects. At the same time, the rapid proliferation of electric vehicles is creating a fleet of millions of lithium-ion batteries that will be deemed unsuitable for the transportation industry once they reach 80 percent of their original capacity. The repurposing and deployment of these batteries as stationary energy storage provides an opportunity to reduce the cost of solar-plus-storage systems, if the economics can be proven. We present a techno-economic model of a solar-plus-second-life energy storage project in California, including a data-based model of lithium nickel manganese cobalt oxide battery degradation, to predict its capacity fade over time, and compare it to a project that uses a new lithium-ion battery. By setting certain control policy limits, to minimize cycle aging, we show that a system with SOC limits in a 65 to 15 percent range, extends the project life to over 16 years, assuming a battery reaches its end-of-life at 60 percent of its original capacity. Under these conditions, a second-life project is more economically favorable than a project that uses a new battery and 85 to 20 percent SOC limits, for second-life battery costs that are less than 80 percent of the new battery. The same system reaches break-even and profitability for second-life battery costs that are less than 60 percent of the new battery. Our model shows that using current benchmarked data for the capital and O&M costs of solar-plus-storage systems, and a semi-empirical data-based degradation model, it is possible for EV manufacturers to sell second-life batteries for less than 60 percent of their original price to developers of profitable solar-plus-storage projects.Comment: 19 pages, 6 figure

    Technology and market perspective for indoor photovoltaic cells

    Get PDF
    Indoor photovoltaic cells have the potential to power the Internet of Things ecosystem, including distributed and remote sensors, actuators, and communications devices. As the power required to operate these devices continues to decrease, the type and number of nodes that can now be persistently powered by indoor photovoltaic cells are rapidly growing. This will drive significant growth in the demand for indoor photovoltaics, creating a large alternative market for existing and novel photovoltaic technologies. With the re-emergence of interest in indoor photovoltaic cells, we provide an overview of this burgeoning field focusing on the technical challenges that remain to create energy autonomous sensors at viable price points and to overcome the commercial challenges for individual photovoltaic technologies to accelerate their market adoption
    corecore